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The effect of interactions on dynamics of coupled motor proteins is investigated theoretically. A simple
stochastic discrete model, which allows one to calculate explicitly the dynamic properties, is developed. It is
shown that there are two dynamic regimes, depending on the interaction between the particles. For strong
interactions the motor proteins move as one tight cluster, while for weak interactions there is no correlation in
the motion of the proteins, and the particle separation increases steadily with time. The boundary between the
two regimes is specified by a critical interaction that has a nonzero value only for the coupling of the
asymmetric motor proteins, and it depends on the temperature and transition rates. At the critical interaction
there is a change in slope for the mean velocities and a discontinuity in the dispersions of the motor proteins
as a function of interactions.
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Motor proteins are active enzyme molecules that are
important for molecular transport, force generation, and
transfer of genetic information in biological systems �1–3�.
They move along the rigid linear tracks by utilizing the
energy of hydrolysis of ATP or related compounds, and the
chemical energy is transferred into the mechanical work with
a high efficiency. However, the mechanisms of the mecha-
nochemical coupling in the motor proteins are not fully
understood �2�.

Structural and biochemical studies of the motor proteins
reveal that they consist of many domains �2–5�, and fre-
quently these subunits also have enzymatic activity. For ex-
ample, for the multidomain helicase RecBCD �6�, which cor-
rects DNA breaks by unwinding the double-stranded DNA
�7–10�, it was found experimentally that it moves signifi-
cantly faster than the individual subunits RecB and RecD
which also work as helicase motor proteins �9�. The coordi-
nation and interaction between the internal domains might
change significantly the dynamic properties of enzymes
�11,12�. Motor proteins in cells frequently work in large
groups �2,3�, although the mechanism of such multiparticle
coordinated motion is not well understood. In recent in vivo
experiments �13� the transport of organelles by kinesin and
dynein motor proteins, which move in opposite directions,
has been investigated, and it was shown that they do not
work against each other. Motor proteins moving in different
directions coordinate the overall transport of vesicles and
organelles. These experimental findings suggest that the in-
terdomain coupling and interactions between different pro-
teins have a strong effect on functioning of these biological
molecules. However, theoretical understanding of these phe-
nomena is still limited �2,14,15�. Recently, we proposed a
simplified theoretical approach to explain the dynamic prop-
erties of multidomain motor proteins by accounting for the
interactions �15�, and it was successfully applied to under-
stand the dynamics of single RecBCD helicases. The purpose
of this work is to investigate the general effect of interactions
inside the motor proteins and between the molecules on dy-
namics for more realistic biological transport models.

We assume that there are two interacting particles that
move along parallel tracks, as shown in Fig. 1. This model
describes the motion of helicases with two active subunits on

different DNA strands �15�, or it might correspond to the
transport of two interacting motor proteins �kinesins, dy-
neins� on parallel filaments �microtubules�. The positions of
the particles A and B are defined by integers l and m, respec-
tively, on the corresponding lattices. It is assumed that the

FIG. 1. Schematic view of the motion of two interacting motor
proteins. Transition rates uai and wai �i=1 or 2� describe the motion
of the particle A �small circles�, while ubi and wbi are the transition
rates for the particle B �large circles�. The first subscripts a and b
for all transition rates refer to the particles A and B, respectively.
The second subscripts 1 describe the trailing subunit, while the
second subscripts 2 are for the leading particle. Any configuration is
specified by the integers l and m for the positions of the particle A
and B, correspondingly. The energy of interaction in the configura-
tion �l ,m� is equal to �l−m���0.
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interaction between particles favors compact vertical con-
figurations, while the potential energy of the nonvertical con-
figurations is larger, U�l ,m�=U0+��l−m�, where the param-
eter ��0 specifies the coupling. This potential seems
realistic for the motion of some helicases �6�, where at each
step of the leading subunit the bond between two strands of
DNA should be broken, and it leads to approximately linear
dependence of the interaction energy on the distance between
the subunits. In addition, in the transport of motor proteins
�kinesins, dyneins, myosins� along parallel filaments �actin
filaments, microtubules� an effectively linear potential of in-
teractions might appear as a result of complex interactions
with the molecular tracks and/or motor protein’s cargo. Note
that in contrast to the previous theoretical approach �15�, in
this more realistic model of the biological transport the par-
ticles are allowed to move without any restrictions on dis-
tances between them.

We introduce P�l ,m ; t� as the probability to find the
system in the configuration where A is at the position l
on the first track and B is at the position m on another track
at time t. The dynamics of the system is described by a set
of transition rates that depend not only on the particle type,
but also on the position of the particles. For configurations
�l±k , l� �k�1�, the trailing particle can move forward �back-
ward� with a rate uj1 �wj1�, where j=a or b corresponds to
the particle A or B, respectively. At the same time, the lead-
ing particle can jump forward �backward� with a rate uj2
�wj2�. For the vertical configurations �l , l� each particle can
hop forward with the rate uj2 or it can move backward with
the rate wj1; see Fig. 1. Note that in our model the transition
rates do not depend on the particle separation k= �l−m�, but
only on the “type” of transition: where it leads to a more �k
decreases� or less compact �k increases� configuration. This
is a property of the linear potential of interaction, which
leads to the energy difference between two consecutive con-
figurations being equal to �, independent of the particle sepa-
ration k. The transition rates are related via the detailed bal-
ance relations

uj1

wj1
=

uj

wj
exp�+ �/kBT�,

uj2

wj2
=

uj

wj
exp�− �/kBT� , �1�

with j=a or b, and where uj and wj are the hopping rates in
the case of no interaction between the particles ��=0�.

The dynamics of the system is governed by a set of mas-
ter equations for the probability distribution function
P�l ,m ; t�,

dP�l,l;t�
dt

= ua1P�l − 1,l;t� + wa2P�l + 1,l;t�

+ ub1P�l,l − 1;t� + wb2P�l,l + 1;t�

− �ua2 + wa1 + ub2 + wb1�P�l,l;t�; �2�

dP�l,l − k;t�
dt

= ua2P�l − 1,l − k;t� + wa2P�l + 1,l − k;t�

+ ub1P�l,l − 1 − k;t� + wb1P�l,l + 1 − k;t�

− �ua2 + wa2 + ub1 + wb1�P�l,l − k;t�; �3�

dP�l − k,l;t�
dt

= ua1P�l − 1 − k,l;t� + wa1P�l + 1 − k,l;t�

+ ub2P�l − k,l − 1;t� + wb2P�l − k,l + 1;t�

− �ua1 + wa1 + ub2 + wb2�P�l − k,l;t� . �4�

At all times these probabilities satisfy the normalization con-
dition �l=−�

+� �m=−�
+� P�l ,m ; t�=1. The solutions of the master

equations can be found be summing over all integers l and m
at the fixed particle separation k. Defining new functions

P0,0�t� = �
l=−�

+�

P�l,l;t�, P0,k�t� = �
l=−�

+�

P�l,l − k;t� ,

P1,k�t� = �
l=−�

+�

P�l − k,l;t� , �5�

it can be shown then that in the stationary-state limit

P0,k = P0,0��0�k, P1,k = P0,0��1�k, �6�

where

�0 =
ua2 + wb1

ub1 + wa2
, �1 =

ub2 + wa1

ua1 + wb2
. �7�

These auxiliary functions play a critical role in our analysis.
When �0�1 and �1�1, using the conservation of probabil-
ity, we obtain

Pi,k =
�1 − �0��1 − �1�

1 − �0�1
��i�k, i = 0,1. �8�

This means that the vertical configuration �k=0� is the most
probable one, and the probabilities of the less compact con-
figurations are exponentially decreasing functions of the par-
ticle separation k. In this regime the particles A and B corre-
late their motion. From the knowledge of the stationary
probabilities and the transition rates, the dynamic properties
of the system, such as the mean velocity V and dispersion
�effective diffusion constant� D of the center of mass, can be
calculated as

Vc.m. =
1

1 − �0�1
��ua2 − �0wa2��1 − �1�

+ �ub2 − �1wb2��1 − �0�� , �9�

and

Dc.m. =
1

1 − �0�1
��1

2
�ua2 + �0wa2� −

�A0 + wa2��ua2 − �0A0�
ub1 + wa2

	
��1 − �1� + �1

2
�ub2 + �1wb2�

−
�A1 + wb2��ub2 − �1A1�

ua1 + wb2
	�1 − �0�
 �10�

where the coefficients Ai are given by
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A0 =
�1�ua1 − ua2� + �0�1wa2 − wa1

1 − �0�1
,

A1 =
�0�ub1 − ub2� + �0�1wb2 − wb1

1 − �0�1
. �11�

The dynamic properties of the individual particles coincide
with the dynamic properties of the center of mass of the
motor protein cluster, and it can be shown that the average
distance L between the particles is always finite �in units of
lattice spacings�,

L =
1

1 − �0�1
��0�1 − �1�

1 − �0
+

�1�1 − �0�
1 − �1

	 . �12�

The situation is different when at least one of �i�1
�i=0 or 1�. Then from Eq. �6� it can be concluded that less
compact configurations �large k� dominate the steady-state
dynamics of the system. In this regime the particles A and B
move independently from each other with mean velocities
�assuming A is the leading particle�

VA = ua2 − wa2, VB = ub1 − wb1, �13�

and dispersions

DA = �ua2 + wa2�/2, DB = �ub1 + wb1�/2. �14�

The dynamic properties of the center of mass of the motor
protein cluster are given by

Vc.m. = 1
2 �VA + VB�, Dc.m. = 1

4 �DA + DB� . �15�

Furthermore, the average particle-particle separation L is
steadily increasing with time.

The boundary between two dynamic regimes is deter-
mined by the condition �0=1 and �1�1, or �1=1 and �0
�1. Using the detailed balance �1�, it can be argued that

uj1 = uj�
1−	j1, wj1 = wj�

−	j1,

uj2 = uj�
−	j2, wj2 = wj�

1−	j2, �16�

where �=exp�� /kBT�, and j=a or b. The coefficients 	 ji are
energy-distribution factors that determine the effective split-
ting of the interaction energy between the forward and back-
ward transitions �2,14,15�. In the simplest approximation, we
assume that all energy-distribution factors are approximately
equal to each other, 0
	 ji�	
1, because they describe
similar transitions in the motion of the individual motor pro-
teins �15�. More general situation with state-dependent
energy-distribution factors can also be analyzed. Substituting
Eq. �16� into the expressions �7�, we obtain

�0� = ��1��−1 = �ua + wb�/�ub + wa� . �17�

Then the boundary between two dynamic regimes corre-
sponds to the critical value of the interaction energy,

�c = kBT�ln�ua + wb

ub + wa
	� � 0. �18�

It is important to note that the critical interaction depends on
temperature, and in the transport of the identical particles

�A=B� it is always zero. The dynamic transition can only be
observed for the coupling of the asymmetric motor proteins.

The existence of two dynamic regimes in the transport of
interacting asymmetric motor proteins can be understood as
follows. Consider the configuration where the particle A is k
sites ahead of the particle B and �=0. The effective rate of
the transition to configurations where two particles are sepa-
rated by k+1 sites is equal to ua+wb, while the effective rate
for k+1→k transition is ub+wa. The free energy change of
making the particle configuration less compact �k→k+1�
can be written as �G�0�=−kBT ln� ua+wb

ub+wa
��0 �2,16�, assum-

ing that ua+wb�ub+wa. If there is interaction between the
particles, then the free energy change increases, �G���
=�G�0�+�. The boundary between two regimes corresponds
to �G��c�=0, and it leads to �c= ��G�0��. Thus, for strong
interactions ����c�, it is energetically unfavorable to make
less compact configurations. The particles cannot run away
from each other, and they move as one tightly coupled clus-
ter. For weak interactions ����c�, the favorable free energy
change of making a less compact particle configuration can-
not be compensated by the energy of interaction. As a result,
the distance between particles grows linearly with time, and
they move in uncorrelated fashion. The dynamic properties
of interacting motor proteins are different in the two regimes,
as shown in Figs. 2 and 3. The mean velocity of the center of
mass changes the slope at the critical energy of interaction,
while the mean velocities of the individual particles converge
to a single value �Fig. 2�. The effect of the interaction is
much stronger for the dispersions. There is a jump in the
mean dispersion of the center of mass at the transition, and
the mean dispersions of the individual particles do not con-
verge to a single value �Fig. 3�. This discontinuity in the
dispersions is a striking feature of the transition. It can also
be hypothesized that this dynamic transition might work in

FIG. 2. Relative velocities �with respect to the motion of a free
particle A� for the coupled motor proteins as a function of the in-
teraction energy. Solid line corresponds to the relative velocity of
the center of mass of the particles, while the dotted lines are the
relative velocities of the individual particles below the critical in-
teraction. The parameters used for calculations are ua=4, wa=0.1,
ub=1, wb=0.1, and 	=0.02.
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cells as a controlling mechanism that switches off the protein
function at undesirable conditions.

For illustration consider a simplified model of the inter-
acting motor proteins that can only step forward, i.e., wa
=wb=0. This model seems reasonable for the description of
RecBCD transport �15�, since the experiments indicate that
the backward transition rates are small �17�. Assuming that A
moves faster than B, the critical interaction can be written as
�c=kBT ln�ua /ub�. For RecBCD proteins, where the transi-
tion rates for subunits can be approximated as ua=300 and
ub=73 base pairs �bp�/s �15�, the critical interaction is �c
�1.4kBT. Theoretical analysis �15� estimates the energy of
interaction between the subunits in RecBCD as �6kBT, im-
plying that this motor protein moves in the strong coupling
regime, in agreement with experiments �7–10�. Using Eqs.
�9�–�11�, it can be shown that for large interactions the dy-
namic properties of the system are given by

Vc.m.�� � �c� =
�ua + ub��−	

1 + �−1 ,

Dc.m.�� � �c� = Vc.m.�1 −
2

��1 + �−1�2	 . �19�

In the weak coupling regime, from the expressions �13�–�15�
it can be derived that

Vc.m.�� 
 �c� = �ua + ub���−	, Dc.m.�� 
 �c� = Vc.m./8.

�20�

The jump in the dispersions at the critical interaction is equal
to

�D = �ua/4��ua/ub�−	 �2
ua

2 + ub
2

�ua + ub�2 − 1	 � 0. �21�

Although for this simplified model the dispersion jump is
always positive, in general this discontinuity might have any
sign.

The presented theoretical analysis is based on a simplified
picture that neglects many important features of the biologi-
cal transport. The intermediate biochemical states, sequence
dependence, and protein flexibility have not been taken into
account in this approach. However, it is expected that these
phenomena will not change the main prediction of our
analysis—the existence of the dynamic transitions specified
by interactions between the particles. The most crucial as-
sumption in our approach is the use of the linear potential of
interactions. An important question is if the predicted dy-
namic transitions will survive for more realistic potentials,
but the linear coupling can be experimentally observed, for
example, by exerting forces on two motor proteins by optical
traps �11,17�, while keeping the difference between the
forces constant at all times.

In summary, the effect of interactions in motor proteins is
investigated by analyzing explicitly a simple stochastic
model. Using the exact formulas for the dynamic properties,
it is shown that there are two dynamic regimes for asymmet-
ric motor proteins depending on the coupling energy. Below
the critical interaction the particles do not correlate with each
other, while above the critical interaction the particles move
as a tight cluster. The origin of these phenomena is the bal-
ance between the chemical free energy change and the
change in the energy of interactions. It is suggested that the
dynamic transitions might play an important role in the func-
tioning of proteins. This theoretical approach proposes a new
way of investigating and controlling biological transport pro-
cesses at the nanoscale level.
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